
[Shukla, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [475]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

A Study of Software Metrices Coupling and Cohesion
Ashrami Shukla*, Aditya Bisen

Acropolis Institute of Technology & Research, Indore, India

Abstract
Software quality in context to software engineering refers to two different notions which are namely Software

Functional Quality and Software Structural Quality. Software functional quality could be defined as something that

reflects how well a function complies with a given design where as on the other hand software structural quality

refers to how well a function meets to non functional requirements. Software crisis refers to the difficulties faced in

writing useful and efficient computer programs. These crises are mainly due to the rapid increase in computer power

and complexity of the problems that could be tackled. With the increase in complexity of the software, many

problems arise because methods are neither sufficient nor efficient enough. In this research paper we are going to

present object oriented metrics coupling and cohesion. They can be use as a powerful tool in not only gaining

knowledge about the quality of the software but also help us to check the complexity of the system.

Keyword: Software metrics, cohesion, coupling.

Introduction
Software quality is a measure that helps one know

how well software is designed and how well confirms

to that design. Software quality may be defined as

conformance to unambiguously stated functional and

performance requirements. The key points of

software quality are

 Software requirements are the foundations

for the measurement of quality

 If given set of criteria is not followed then

the result is lack of quality

 If the software confirms to meet some

specific requirements and it fails to meet

those requirements then in such a case the

quality of the software is suspected.

Coupling and cohesion are considered as the two

most important aspects in quality of a software. The

ever increasing need for software quality

measurement has led to a lot of research in software

metrics and the development of software metrics

tools like coupling and cohesion. As object oriented

analysis and design is considered at front spot of the

software engineering cohesion metrics have been

developed. For the ideal choice of a good quality

software it is desired to have low coupled and high

cohesive design. Coupling is the degree t which each

program module relies in each other. Coupling

measures the strength of all relationships between

functional units where as cohesion measures the

semantic strength between components within a

function, cohesion is closely bound to the idea of

abstraction. Software metrics are basically of two

types namely internal quality and external quality.

Internal quality measured is performed on the

software itself and are measurable both during and

after the creation of software. External quality

measures are evaluated with respect to how a product

relates to its environment. Even though coupling and

cohesion deal with software quality they are entirely

different concepts. In order to have the best quality of

a software coupling and cohesion should reach the

two opposite ends. Which means loose coupling and

strong cohesion provides the best out of software.

Loose coupling means having private fields, non

public classes and private methods while making all

members visible having package as default visibility

comes under high cohesion. Coupling is affected by

the object-oriented features like inheritance and

dynamic binding dynamically; interaction-based

coupling is bound to show the impact of such features

in the dynamic analysis results. Cohesion is related to

robustness, reliability and reusability. Cohesion is the

concept that captures intra module. Cohesion is in

form of several levels.

Coupling
Since object oriented technology uses objects and not

algorithms as its fundamental building blocks, the

approach to software metrics for object oriented

programs must be different from the standard metrics

set. Thus there is a need for a good software quality.

In order improve the quality of the software on must

first define the aspects of quality and then decide how

he is going to measure them. Some of the seminal

http://www.ijesrt.com/

[Shukla, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [476]

methods of evaluating an object-oriented design are

through the use of measures for coupling and

cohesion. Coupling or dependency is the degree to

which each module unit relies on other unit. Coupling

and cohesion are two contrasted things. Low

coupling correlates with high cohesion and vice

versa.

Figure 1: Types of coupling

Types of coupling:

Coupling can be high (tight) coupling or low (loose)

coupling. Some other types are discussed below

A. Content Coupling:

It is also known as pathological coupling. It occurs

when one module depends on the internal working of

another module. And thus making any change in the

second module will produce data which will

automatically lead to the changes in first module.

B. Common Coupling:

It is also known as global coupling .it usually occurs

when two modules share the same global data.

Making any change in one of the shared module

causes changes in all the other modules using it.

C. External Coupling:

As the name suggests this coupling occurs when two

modules share an externally imposed data format,

communication protocol or device interfaces. This

coupling is basically related to external tools and

devices.

D. Control Coupling:

This coupling could be defined as one module

controlling the flow of another module, by passing it

information on what to do and how to do.

E. Stamp Coupling :

It is also known as data structured coupling. It occurs

when modules share composite data structures and

use only same part of it. This may lead to changing of

the way a module reads a record because the field

which is not required by the module has now been

modified.

F. Data Coupling:

Data coupling occurs when modules share data

through parameters. Each datum is an elementary

piece also these are the only data that is actually

shared.

G. Message Coupling:

This type of coupling is the loosest type of coupling.

Message coupling could be achieved by state

decentralization and component communication done

via parameters or message passing.

H. No Coupling:

As the name suggest in this type of coupling modules

do not communicate with each other at all.

Limitations of coupling:

Tightly coupled systems tend to exhibit the following

the following developmental characteristics, which

are often seen as limitations to coupling:

 Any change in one module usually forces a

ripple effect of changes in the other module

connected to it.

 Assembly of modules may require more

efforts and time due to increased inter-

module dependency.

A particular module might be harder to reuse because

dependent modules must be included with the given

module.

Cohesion
As discussed above cohesion plays an important role

in the quality of software it could be defined as the

following definition given below. Cohesion refers to

the degree to which the elements of a module belong

to one another in other words it is the measure of

how strongly related each piece of functionality

expressed by the source code of a software module.

Cohesion is dependent on the two given criteria if

these help the cohesion to increase. If the

functionalities embedded in the class are common to

the functionalities accessed through the methods.

Methods carry out a small number of related

activities. Cohesion is thus dependent on both the

factors that are coupling and complexity.

Types of cohesion:

Cohesion being a qualitative measure which means

that the source code to be measured is examined

using a rubric to determine a classification. Types of

cohesion which starts from worst to best are as

follows:

A. Coincidental Cohesion:

Coincidental cohesion may be defined as a

cohesion in which parts of module are

arbitrarily grouped. The relationship

http://www.ijesrt.com/

[Shukla, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [477]

between the parts is that they are grouped

together.

B. Logical Cohesion:

As the name suggests logical cohesion may

be defined as a cohesion in which the parts

of module are logically categorized to do the

same thing even if they are different in

nature.

C. Temporal Cohesion:

When the parts of module are grouped

during the process they fall under the

category of temporal cohesion. The

processing is done at a particular time

during the execution.

D. Procedural Cohesion:

When the grouping of parts of module is

done on a criteria that they follow certain

sequence of execution it is called procedural

cohesion.

E. Communicational / Informational

Cohesion:

When the parts of a module are operated on

the same data they fall under the category of

communicational cohesion. This is also

known as informational cohesion.

F. Sequential Cohesion:

When the output of one part is the input for

other part of the module this type of

cohesion is known as sequential cohesion.

G. Functional Cohesion:

Functional cohesion may be defined as a cohesion in

which parts of module are grouped as they all

participate in a single well defined task of the

module.

Figure 2: Types of Cohesion

Conclusion
The software metrics is the way that helps us to take

the corrective steps to develop the good quality

software’s. In this paper we have only discussed the

software metrics like coupling and cohesion and how

they are helpful for developing the good quality

software’s. The types of cohesion and coupling are

very much useful when we design the application and

it also helps us to check the complexity of the

application at designing stage.

References
1. M.C. Carlisle and A. Rogers. Software caching

and computation migration in olden. In ACM

Symposium on Principles and Practice of

Parallel Programming, pages 29–38, Santa

Barbara, California, USA, July 1995.

2. I.M. Chakravarti, R.G. Laha, and J. Roy.

Handbook of Methods of Applied Statistics,

volume 1. John Wiley and Sons, New York,

USA, 1967.

3. S.R. Chidamber and C.F. Kemerer. Towards a

metrics suite for object-oriented design. In

Object Oriented Programming Systems

Languages and Applications, pages 197–211,

Phoenix, Arizona, USA, November 1991.

4. S.R. Chidamber and C.F. Kemerer. A metrics

suite for object-oriented design. IEEE

Transactions on Software Engineering,

20(6):467–493, June 1994.

5. E.J. Chikofsky and J.H. Cross II. Reverse

engineering and design recovery: A taxonomy.

IEEE Software, 7(1):13–17, 1990.

6. Choi, M. Gupta, M.J. Serrano, V.C. Sreedhar,

and S.P. Midkiff. Stack allocation and

synchronization optimizations for Java using

escape analysis. ACM Transactions on

Programming Languages and Systems,

25(6):876 – 910, November 2003.

7. L.L Constantine and E. Yourdon. Structured

Design. Prentice-Hall, Englewood Cliffs, New

Jersey, USA, 1979.

8. M. Dahm. Byte Code Engineering Library

(BCEL), version 5.1, April 25 2004.

http://jakarta.apache.org/bcel/.

9. D.P. Darcy, C.F. Kemerer, S.A. Slaughter, and

T.A. Tomayko. The structural complexity of

software: An experimental test. TOSE,

31(11):982–995, 2005.

10. S. Demeyer, S. Ducasse, and O. Nierstrasz.

Finding refactorings via change metrics. In 15th

ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and

applications, pages 166–178, Minneapolis,

Minnesota, USA, 2000.

11. B. Dufour, K. Driesen, L. J. Hendren, and C.

Verbrugge. Dynamic metrics for Java. In

Conference on Object-Oriented Programming

Systems, Languages and Applications, pages

149–168, Anaheim, California, USA, October

26-30 2003.

http://www.ijesrt.com/
http://jakarta.apache.org/bcel/

